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F o r  a la t t ice gas  wi th  a t t rac t ive  po ten t ia l s  o f  finite r ange  we use  the  ine- 
qual i t ies  o f  F o r t u i n ,  Kas te l eyn ,  a n d  Gin ibre  ( F K G )  to ob t a in  fairly 
accura te  uppe r  and  lower b o u n d s  on the  equ i l ib r ium probabi l i ty  p(K) o f  
f inding the  set o f  sites K occupied  a n d  the  ad jacent  sites unoccup ied ,  i.e., on  
the  probabi l i t ies  o f  f inding specified clusters.  T h e  probabi l i ty  tha t  a g iven 
site,  say  the  origin,  is e m p t y  or  be longs  to a c lus ter  o f  at m o s t  l part icles  is 
s h o w n  to be a non inc reas ing  func t ion  o f  the  fugaci ty  z a n d  the  reciprocal  
t e m p e r a t u r e  fl = (kT) - 1; hence  the  perco la t ion  probabi l i ty  is a nondec reas -  
ing func t i on  o f  z a n d  ft. I f  the  forces a re  no t  ent irely a t t rac t ive ,  or  if  the  en-  
semble  is res t r ic ted by fo rb idd ing  c lus ters  larger  t h a n  a cer ta in  size, the  F K G  
inequal i t ies  no  longer  apply ,  bu t  useful  uppe r  and  lower b o u n d s  on  p(K) 
can  still be ob ta ined  if the  dens i ty  o f  the  sys t em and  the  size o f  the  c lus ter  
K are  no t  too  large.  T h e y  are  ob ta ined  f r o m  a genera l iza t ion  o f  the  
K i r k w o o ~ S a l s b u r g  equa t ion ,  der ived by r ega rd ing  the  sys t em as a m ix tu r e  
o f  different  types  o f  cluster ,  whose  only  in te rac t ion  is t ha t  they  c a n n o t  
over lap  or  t ouch .  

KEY W O  R DS: Percolation ; finite-temperature lattice systems; inequalities; 
clusters. 

1. I N T R O D U C T I O N  

I f  p a r t i c l e s  a r e  p l a c e d  o n  s o m e  o f  t h e  s i t e s  o f  a l a t t i c e ,  s u c h  a s  t h e  p l a n e  s q u a r e  

o r  s i m p l e  c u b i c  l a t t i c e ,  t h e  r e s u l t i n g  c o n f i g u r a t i o n  c a n  o f t e n  u s e f u l l y  b e  

d e s c r i b e d  i n  t e r m s  o f  c l u s t e r s ,  w h i c h  a r e  s e t s  o f  o c c u p i e d  s i t e s  c o m p l e t e l y  

s u r r o u n d e d  b y  v a c a n t  s i t e s .  A n  a s s i g n m e n t  o f  p r o b a b i l i t i e s  t o  d i f f e r e n t  

c o n f i g u r a t i o n s ,  s u c h  a s  i s  g i v e n  b y  G i b b s  e n s e m b l e s ,  t h e n  a l s o  i n d u c e s  

p r o b a b i l i t i e s  f o r  t h e  o c c u r r e n c e  o f  d i f f e r e n t  c l u s t e r s .  T h e s e  c l u s t e r  p r o b a b i l i t i e s  
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are of interest in the percolation problem (1-4) and in the theory of meta- 
stable states and nucleation processes in a lattice gas or Ising spin system. (5,6~ 

In this paper we shall obtain some inequalities for the probabilities of 
finding particular types of  cluster in a lattice gas, and also for the percolation 
probability, which can be loosely described as the probability that some speci- 
fied site contains a particle belonging to an infinite cluster. These probabilities 
will be calculated in a grand canonical ensemble, but the formalism is suffi- 
ciently general to apply to a restricted grand canonical ensemble of the type 
used by Capocaccia e t  al. (~ for the static description of metastable states. 
In these ensembles the configurations are restricted to those that contain 
only clusters of  specified types (for example, we might require all the clusters 
to contain less than a specified number of  particles). The grand canonical 
ensemble includes as a special case/9 = 0, the ensemble for which the perco- 
lation problem has usually been studied, (1~ in which the occupation numbers 
of the different sites are independent and identically distributed (taking the 
values 0, 1 only); but it also includes the case studied more recently (a,~ 
in which the occupation numbers are correlated as in a finite-temperature 
ensemble. 

We use two methods for studying the distribution of  clusters and the 
percolation probability. One of them, based on the inequalities of Fortuin, 
Kasteleyn, and Ginibre (FKG), C7) applies to systems with general one-body 
and attractive two-body and many-body interactions; it gives good upper 
and lower bounds on the cluster probabilities for a low-density equilibrium 
system (a comparison with Monte Carlo estimates of these probabilities is 
given in the following) and also yields information about percolation proba- 
bilities. The other method is more general, applying in particular to the type 
of  restricted ensemble mentioned earlier, to which the F K G  inequalities do 
not apply; it is based on the idea of  Minlos and Sinai (a~ that a lattice system 
can be regarded as a "ga s "  of clusters whose only "interact ion" is a repulsion 
arising from the fact that they cannot overlap or touch. This makes it possible 
to apply the method of obtaining inequalities for the pressure and correlation 
functions of systems with repulsive interactions due to Lieb (9~ and developed 
by Penrose (1~ and by Lebowitz and Percus. (11~ This method is also related 
to some of the inequalities used by Mtirmann (2~ in his analysis of clusters in 
continuous systems. 

For the percolation problem, there already exists a large amount of 
information, based on a variety of analytical and numerical methods, about 
the "infinite-temperature" case in which the sites are independent. For the 
Bethe lattice, even the finite-temperature problem can be solved exactly(3~; 
but for the more interesting two-dimensional square lattice, all that has been 
proven so far is that for nearest-neighbor attractive interactions and densities 
~< �89 the percolation probability is zero for T >/ To, the critical temperature, 
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but nonzero for temperatures below Tc if the density is that of the high-density 
phase/~ (This last result was also shown to hold for higher dimensionalities.) 
In this paper our main result concerning percolation is that, when the FKG 
inequality applies, the probability that a given site is unoccupied or belongs 
to a cluster containing at most I particles is a nonincreasing function of the 
reciprocal temperature/3 and the fugacity z. It follows from this that the per- 
colation probability is a nondecreasing function of/3 and z. [These results, 
Eqs. (32) and (33), are independent of the bounds in Section 3 and the 
interested reader may go directly from Eq. (14) to Section 4.] 

2. D E F I N I T I O N S  

We consider a lattice gas on a finite set A of sites. Each configuration of 
the lattice gas can be specified by specifying which set of sites is occupied; 
thus each configuration C corresponds to a subset of A (and we simply 
denote by C the set of occupied sites). The energy of the lattice gas when its 
configuration is C will be denoted by E(C), and the number of occupied 
sites by N(C). In a grand canonical ensemble at temperature T and fugacity 
z the probability of the configuration C is 

/x(C) = zmC~{exp[- fie(c)]} 
Z(z, 8; A) (1) 

where E(z, fi; A) is the grand partition function, E = ~c z u exp(-/3E), and 
/3 = 1/ r. 

For the time being we shall assume that the energy function E is a sum 
of one-body and two-body terms only (this condition will be relaxed in 
Section 5). Then E(C) has the form 

E(C) = U,n,(C) + V jn (C)nj(C) (2) 
i ~ A  i < ] 

where n~ is the occupation number of the ith site, which, for a given configura- 
tion C, takes on the value 1 if site i is occupied and the value 0 if site i is 
unoccupied, i.e., 

n~(C) = {10 if i~C} 
if not (3) 

The sum ~ j  in Eq. (2) goes over all pairs (i,j) of different sites in A, each 
pair being counted once only. 

In order to define clusters, it is necessary to specify which pairs of sites 
in A are to be regarded as adjacent. This is done by defining a set B of 
bonds associated with A; the bonds are unordered pairs of different sites in A 
and we define two sites to be adjacent if and only if they belong to the same 
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bond. We require that B must include every pair (i, j )  for which V~j # 0; 
other pairs may be included if desired. For this definition to be useful we 
want most of  the V,j to be zero; this condition is satisfied if A is a subset of 
some regular infinite lattice and there is a finite " r ange"  R such that V~j = 0 
whenever the Euclidean distance between i and j exceeds R. In particular, if 
R = 1, i.e., nearest neighbor interactions, then bonds can be simply defined 
as all nearest neighbor connections. Most analyses of clusters are based on 
such a model. 

Given any configuration C, we can now partition it into subsets called 
clusters, in such a way that no member of any cluster is adjacent to a member 
of another cluster, but if a cluster is divided into two nonempty sets of sites, 
then at least one site in one of the sets is adjacent to a site in the other, i.e., 
clusters are sets of  occupied sites connected directly or indirectly by bonds. 
Since the clusters are disjoint, we have 

N(C) = N(C1) + N(C2) + ... + N(Cr) (4) 

where N(C) is the number of sites in C, and C1 ..... Cr are the clusters consti- 
tuting C. Also, since no sites in different clusters are adjacent we have, 
from (2), 

E(C)  = E(Cl) + E(C~) + ... + E(Cr) (5) 

Equations (4) and (5) show that, once we have taken into account the fact 
that clusters cannot overlap or be adjacent, we can regard them as indepen- 
dent systems. This observation is the basis of  most of this paper. 

To make use of  this cluster description of lattice gas configurations we 
consider the statistical properties of  the clusters. Let K be any subset of  A. 
Define p(K) as the probability that all the sites in K are occupied and all the 
sites not in Ktha t  are adjacent to sites in Kare  unoccupied. I f K  is connected, 
then p(K) is just the probability of finding the cluster K. I f  Kis not connected, 
we can decompose it into connected clusters K1,/<2 ..... and p(K) is then the 
probability of  finding all the clusters K1, Ks ..... 

Writing B(K) to denote the set of sites not in K that are neighbors of  
sites in K, Le., the border or perimeter sites of K, we have, by the rule for 
conditional probabilities, 

p(K) = prob{all sites of  B(K) are vacant} 

x prob{all sites of K are occupied]all sites of B(K) are vacant} (6) 

where prob {E IF} denotes the conditional probability of event E given event 
F. In the subensemble where all sites of  B(K) are vacant, Eqs. (4) and (5) 
ensure that the sites constituting K are independent of those outside; therefore 
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the conditional probability in (6) is the same as if  the sites outside K were 
removed altogether, and is equal to O(K)/E(K), where 

O(K) = z N(K) exp[-fiE(K)] (7) 

and E(K) is an abbreviation for E(z,/3; K), the grand partition function for a 
lattice gas confined to the set of  sites K. The other factor in (6) can be written 
in terms of the characteristic function of the event that all the sites of B(K) 
are vacant, which is ~ ( K )  [1 - n~(C)], and so we obtain from (6) 

p(K) -= \t~B(K) ( ~ (1 -n~)>O(K)/E(K) (8) 

The quantity E -  I(K) is the conditional probability that all sites in K are 
vacant given that all sites in B are vacant. Using this fact in (8), we obtain an 
alternative expression for p(K), 

p(K) = ( ~  ( 1 -  nO>O(K) (9) 

where K = K w B(K) is the set consisting of  all sites in K and in B(K). 
Equation (9) tells us that p(K)/O(K) is equal to the probability, in the grand 
canonical ensemble on A, that all sites in K and B(K) are vacant. This prob- 
ability is also equal to the ratio of the grand partition functions on A - K 
and on A, so that we obtain the further expression 

p(K)/O(K) = E(A - K)/E(A) (10) 

All three of these expressions will be used in the next sections to derive 
upper and lower bounds on p(K). Finally we note that from the definition 
of  clusters we have 

= ( n , ,  n ( , -  ( , ,  
\ feK jEB / 

[For the independent-site case, (11) gives p(K) = I-I,~K <n~) I-Ij~s (1 - <ns) ) = 
pn(r)(1 _ p)N(B), the second equality holding when <n~) = p for all i.] 

3. ATTRACTIVE FORCES 

In this section we consider the case where the potential is attractive: 

V~j ~< 0 fora l l  i, j e A  (12) 

We obtain simple upper and lower bounds on p(K)/6(K) that are correct 
to first order in the density p or fugacity z, and somewhat more complicated 
bounds that are correct to second order in p or z. 
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Most of these bounds depend on the F K G  inequality, (7) which applies, 
when (12) holds, to any pair f ,  g of functions of the configuration that are 
nondecreasing in the sense that 

A D B implies f(A) >~ f(B) and g(A) >1 g(B) (13) 

An example of  such a function is n~(C), the occupation number at the site 
i, which clearly can only remain the same or increase (from 0 to 1) when 
the set of  occupied sites is increased. 

The F K G  inequality is 

(fg> >>. (f>(g> (14) 

where the averages are taken in the grand canonical ensemble with probability 
distribution given by (i): e.g., (n~nj> >1 <n~>(nj>, which is equivalent to 
saying that, for attractive interactions, the presence of a particle at site i 
increases the probability (for a given/3 and z) that there will be a particle at 
the site j. Moreover, if fl,f2 ..... f~ are nondecreasing and nonnegative 
functions of  the configuration (with r > 2), then it follows by induction that 

<f, f2 "'f~> >/ <fl><f2> "" <fr> (15) 

The inequalities (14) and (15) also hold if f ,  g, and f~ are nonincreasing 
functions; to prove this for (14), replace f and g by - f a n d  - g ,  and for (15) 
use induction as before. 

To obtain a simple lower bound on p(K), we take f = 1 - n~, where 
i ~ K; then (9) and (15) give 

p(K) >10(K) 1-q (1 - P0 (16) 
~EK 

where pf = <n~> is the probability that site i is occupied. This bound is correct 
(as an approximate equality) to first order in the density. For a more accurate 
bound, we can apply (15) to (8) instead of to (9), obtaining 

p(K) >1 [O(K)/E(K)] I-[ (1 - p,) (17) 
t ~B(K)  

This bound is stronger than (16), because in deriving it we apply (15) to 
fewer factors 1 - n,. 

The bound (17) is, in fact, correct to second order in the density if 
V,j = 0 for all sites i, j in B(K); on a plane square lattice or simple cubic 
lattice with nearest neighbor interactions this is true for monomer~ (i.e., 
when K is a single site) but not for larger clusters. The reason for this is that 
the difference between the right-hand sides of  (8) and (17) is 

[O(K)/E(K)] E [<n,nj> -- <n,><nj>] + O(p 3) 
i < ]EB(K)  
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and if there is no direct interaction between sites i and j, then [(n~ni) - (n~)(nj)] 
is also O(pS). 

Upper bounds on p(K) can be obtained in a similar manner. We note 
that, by FKG,  (1-I (1 - nO) is increased if we weaken the pair interactions. 
Hence we obtain (~[(1 - ni)) ~< l-I(1 + ze-atTO -1, where (1 + ze-eV,) -~ is 
the value of(1  - n~) when there are no pair interactions at all, so that all sites 
are independent. Hence, using (8) and (9), we obtain 

p(K) <<. [O(K)/E(K)] ~ (1 + ze-aU,) -~ <~ 0(K)I--~(1 + ze-Zr~,) -~ (18) 
t~B(K) i~g  

Considered as approximate equalities, both these bounds on p(K) are accurate 
to first order in z. 

To obtain stronger upper bounds on p(K), we define the interaction 
between the sites in K" and those outside to be 

W =  ~ ~,_V~,ninj (19) 
~ . g  j E A  - K 

Then the definition of  E gives 

E(A) = E(A - g)E(f)<e-~W)o (20) 

where ( )o denotes an expectation with respect to a grand canonical ensemble 
with no interaction between the sites in _K and those outside. Using (20) 
in (10), we obtain 

p(K) = O(K)/[E(K)<e-Br ] (21) 

Considered as an equality for p(K)/O(K), this is accurate to first order 
in z. 

We now need bounds on (e-~W>o. Since n,nj takes the values 0 and 1 
only, and e-B% - 1 >/0, we have, setting U~ = 0 for simplicity, 

(e-~W)o = < / ~  1-~ [ l+n,n j (  e - ~ % -  1 ) ] ~  
jEA - g  

t~K" J~A-K" 

I> 1 + ~ ~. [z2/(1 + z)2](e-'3v,, - 1) (22) 

The last line is a consequence of  the F K G  inequality, which implies that 
(n~nj}o is decreased if we weaken any of the (attractive) interactions and is 
therefore greater than the value it would take if the interactions were 
removed altogether, which is [z/(1 q- z)] 2. By substituting (22) into (21), we 
obtain an upper bound on p(K) that is accurate to second order in z. 
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A different lower bound on (e-aW)o can be obtained by using the con- 
vexity of  the exponential function and then the F K G  inequality as in (22). 
This bound is, from (19) 

(e-~W)o>~exp(-f(W)o) > e x p ( - 3 ~  ~ [z2/(1 +z)2]V~j} (23) 
i~R JeA-K" 

but it is weaker than (22) in most practical cases, even though both (22) and 
(23) are accurate to second order in z. 

The methods we have used for upper bounds on p(K) can be adapted 
to give further lower bounds, which are accurate to second order in the 
density, but which require a knowledge of  the pair distribution. To derive 
them, we start from the following identity, a companion to (20): 

E(A - R)E(K) = E(A)(e aW) (24) 

When combined with (10) this gives 

p(IQ = [O(K)tZ(g)](eWe) (25) 

A lower bound on (eBW), analogous to the bound on (e-BW)o given in (22) is 

(eeW) = ( ~  ,~A_ [l - n~n,(1- eB'O] ~ 

>f I - [  I"-I [1 - (n,nj)(1 - ee%)] (26) 
~eK J e A - R  

where the inequality follows from (15), since 0 ~< 1 - eBV,J ~< 1. An alterna- 
tive, and somewhat weaker, lower bound, obtained from the convexity of  the 
exponential function, is 

(e eW) >~ exp(fl E ~ (n,n,)V~,} (27) 
~eR~ J e A - R  

I f  A is a periodic box and there are interactions between nearest neighbors 
only, then we can evaluate the lower bounds (26) or (27) if we know the mean 
energy of  the system, since this is expressible in terms of  (n~nj) with ( ( j )  
any pair of  nearest neighbors. We can then use the resulting lower bound on 
(e ~W) in (25) to obtain a lower bound on p(K) that is accurate to second 
order in the density. 

Table I gives a comparison of the main upper and lower bounds derived 
in this section with the results of  a computer simulation ~ of  a lattice gas 
on a finite, simple cubic lattice with nearest neighbor interactions, periodic 
boundary conditions, and the one-body potential U~ set equal to zero at every 
lattice site i. The computer counted the number m~ of clusters of  each size l; 
the bounds on the expectation of  this number are calculated by summing the 
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Table I. Comparison of Calculated Bounds on ~mz), the Expectation Number 
of / -Par t ic le  Clusters, w i th  Values Estimated from Computer Simulation, for 
a 50 x 50 x 50 Simple Cubic Lattice wi th  Periodic Boundary Conditions and 

Attractive Nearest Neighbor Interactions a 
I I  I 

More Estimated value Accurate Simple 
Simple lower accurate from simulation upper bound upper 

Cluster size bound from lower bound with standard from (21) bound 
1 (16) from (17) error and (22) from (t8) 

1 1252.8 1257.4 1266 _+ 4 1266.3 1285.2 
2 173.8 175.0 173 + 2 177.6 181.7 
3 40.2 - -  41 + 1.8 - -  43.3 
4 12.0 - -  12.7 _+ 0.6 - -  13.4 
5 4.0 - -  4.4 + 0.3 - -  4.7 
6 1.5 - -  1.6 + 0.2 - -  1.7 

[ [ [  [JJl [[uJ~{ [ [  [[[ [[  [[H[[[[[[[I[ [[H[ [ 

The interaction energy V~, and the reciprocal temperature/3 are related by/3] V~,[ = 1.5 
(i.e., T "~ 0.59Tc) and the density, 0.0146 particle per site, is the density of the low- 
density phase at coexistence, estimated by means of a Pad6 approximant314) The 
fugacity is e -~'5 = 0.0111089. 

bounds  given in this  sect ion over  a l l / - p a r t i c l e  clusters tha t  are  poss ible  on 
the  chosen  lat t ice.  F o r  example ,  there  a re  N poss ib le  one-par t ic le  clusters,  
where  N is the  number  o f  la t t ice  sites, and  so ( m l )  = Np(1), where  1 denotes  
some one-par t ic le  cluster.  Similarly,  we find ( m 2 ) =  3~v(2) ,  where 2 is 
some two-par t ic le  cluster,  etc. Hence  the  bounds  (16), (17), (21) wi th  (22), and  
(18) give [not ing tha t  on the  s imple cubic  la t t ice N(B(1)) = 6, N(1) = 7] 

Nz(1 - p)7 ~< Nz(1 + z ) - l ( 1  - p)6 ~< ( m l )  (28a) 

and  

( m l )  ~ Nz[1 + 7z + (6y + 15)z2]-1[1 + 30(y - 1)z2/(1 + z)2] -1 
(28b) 

( m l )  <~ Nz(1 + z) -7 

where  y = exp(/~[ V,,~]), V,~,~ is the  value  o f  Vis when (i, j )  are  neares t  ne ighbors ,  
and  we have sl ightly weakened  the be t te r  uppe r  b o u n d  [line one o f  Eq. (28b)] 
by  d r o p p i n g  the  te rms in z ~ and  above  f rom E(K).  

The  co r re spond ing  bounds  on  (m2),  the expected number  o f  two-par t ic le  
clusters,  a re  

3Nz2y(1 _ p)lz ~< (m2)  
(29a) 3Nyz2(1 + 2z + yz  2)- 1(1 - p)lo ~< (m2) 

a n d  

(m2) <<. 3Nyz2[1 + 12z + (15y + 51)z2]-1[I + 42(y - l)z2/(1 + z)2] -1 

(rn2) <~ 3Nyz2(l + z) -~2 (29b) 
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For  l />  3 we have used only the first-order formulas (16) and (18), and 
weakened the resulting bounds  a little further to obtain 

N Q f ( 1  - p)2+~, <~ <ml> ~< N Q f ( 1  + z) -b(t)-' (30) 

where Q~ is the "cluster  part i t ion funct ion"  defined by 

QzzZ= ~ O(K) (31) 
K :N(K) = 1 

where the sum goes over all translationally nonequivalent /-particle clusters 
that  are possible on the chosen lattice. The number  2 + 5l is the largest value 
o f  N(B(K)) compatible with N(K) = /, and b(l) is defined as the smallest 
value o f  N(B(K)) compatible with N(K) = I. Numerical  data  about  Q~ and 
b(l) are given in Table II.  

4. P E R C O L A T I O N  A N D  R E L A T E D  P R O B L E M S  

I f  O is the origin o f  some infinite lattice 5e, the probabili ty (with respect 
to some specified measure on configurations in s that  O belongs to an 
infinite cluster in ~ is called the percolation probability. We can use the F K G  
inequalities to show that  for a system in equilibrium at fugacity z and tem- 
perature /3 -1 with interactions V~ s ~< 0, the percolation probabili ty is a 
nondecreasing function of /3  and z. To do this we first consider the grand 
canonical  ensemble in A, where A is any finite subset o f  ~a that  contains the 
origin, and define F~(C) (where C c A) as the characteristic function o f  the 
event that  O is either empty or par t  o f  a cluster comprising at most  l sites. 
F, is a nonincreasing function o f  C, since adding sites to C cannot  reduce the 

Table II. Values of Q=(13), 
for ~ = 1 .5 / IV , ,  [, and of 

b(/) 

l Ql b(l) 

1 1 6 
2 13.445 10 
3 301.3 13 
4 8,682 15 
5 282,852 17 
6 10,037,271 18 
7 3.7790 • 108 - -  
8 1.48907 • 101~ - -  
9 6.07556 x 1011 - -  

10 2.55024 • 10 la - -  
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size of the cluster containing O. It follows, then, from the F K G  inequalities 
that 

aV,--~j ( F , ) a  = - f i [ ( F , n , n j )  - (Fz ) (n ,n j ) ]  >1 O, a-----07~ >~ 0 (32) 

and hence that 

a(F~)A a(Ft)a 
~--T- ~ o, a--Y- ~< 0 (33) 

where we have indicated the region A explicitly. Since (32) and (33) hold for 
every A, they also hold for (F~), the expectation value of Fz in the infinite- 
volume equilibrium state. These states, whether defined as limits of finite- 
volume states or by the Dobrushin-Lanford-Ruelle equations, (12~ need not 
of course be unique for every/3 and z. For the case in which we are interested 
here, however, with V~j = V(i  - j )  <~ O, it is known that the state is unique 
except possibly when z = exp[-�89 V ( i - j ) ]  (corresponding to zero 
magnetic field in spin language) and fi is larger than some minimum value, 
so that T ~ To. <la~ 

Since (Fz) is monotone nondecreasing in l and 0 ~< (F~) ~< 1, its limit 
as l----> oo, which we shall call (F~) ,  exists. We define the percolation proba- 
bility as m 

Pc(P, z) = 1 - ( F ~ )  (34) 

which by our inequalities will therefore be a nondecreasing function of/3 and z. 
We can also use the F K G  inequality to study the effect of boundary 

conditions on the percolation probability. The inequality (32) implies that 
if the one-particle potential is made more attractive at some site i, then 
(Fz)A will decrease. This would occur, for example, if the "boundary  
conditions" outside A c s were changed from "em p ty "  to "full ," decreas- 
ing U, from zero to U, = Zjr V, i ~< 0. In spin language this corresponds 
to changing from "minus"  to "p lus"  boundary conditions. This implies in 
particular that (F,)a is monotone nonincreasing (nondecreasing) as A grows 
for empty (full) boundary conditions. It also implies that Pr z) for a state 
obtained as a limit A - +  0o with empty boundary conditions is not greater 
than that for a state with full boundary conditions, a result already derived 
by Coniglio et  al. ~ 

The inequalities we have used for (Fz) also apply to the probability 
that the origin is part of a cluster that is contained in some specified set A 
(where O ~ A). Hence the probability that the origin is part of a cluster not 
contained within A increases with/3 and z. 

All our results also apply in an ensemble where we specify that there is 
a particle at the origin, or, for that matter, particles on all the sites in a 
specified set B. This means in particular that, for a given A, the expected 
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fraction of  particles contained in clusters of  sizes ~< l is a decreasing function 
of fl and z for all L 

We believe that this expected fraction of particles will also decrease 
when fl is increased, while the number of particles in A is kept fixed (canonical 
ensemble), if we have, for example, nearest neighbor attractive interactions 
with adjacent sites defined as nearest neighbor sites. This is true for the 
Bethe lattice t3) and is borne out by some computer simulations on the simple 
cubic lattice. ~z~) However, we have been unable to prove it in general. 

We note here that the event " the  origin belongs to an infinite cluster" 
does not belong to the algebra of  local, or quasilocal, observablestl3); its 
occurrence cannot be determined by looking only at finite regions of  an 
infinite system, nor does it belong to the tail field. The probability of  percola- 
tion can therefore be, and generally is, a nonanalytic function of  the thermo- 
dynamic parameters, such as the fugacity z, even when all the correlation 
functions are analytic in z, e.g., when there are no interactions between the 
particles. 

5. G E N E R A L  I N T E R A C T I O N S  

I f  the potential energy function E(C) is not attractive, we can no longer 
use the F K G  inequalities, but we can still use the additivity conditions (4) 
and (5) to obtain some potentially useful upper and lower bounds. Our 
reason for looking at these more general energy functions is that we are 
interested in describing metastable states by means of a restricted ensemble, (~,15~ 
which is a suitably chosen subensemble of  the grand canonical ensemble. 
One way of  doing this is to use the subensemble consisting of  the configura- 
tions whose clusters all have sizes less than or equal to some specified size l*. In 
the cluster formalism we have described in Section 2, such an ensemble can be 
described using the usual grand canonical distribution formula (1) if we redefine 
the energy function to be equal to + oo if any cluster containing more than l* 
particles is present. This energy function satisfies our basic additivity condition 
(5), but violates the condition of  applicability of the F K G  inequalities. 

A fairly crude upper bound on p(K) can be obtained from Eq. (8), by 
using the fact that 0 <~ 1 - n~ ~< 1 ; this bound is 

p(K) <~ O(K)]E(K) (35) 

This may be simplified, without appreciable weakening, by using the 
inequality E(K) 1> 1 + z Z~x e -atq (obtained by dropping terms in which 
there is more than one particle present in K), to obtain 

p(K)<~ 0(K)/(1 + z~re-Bt~, ) (36) 
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These bounds  on p(K) are  correct  only  to lowest  o rder  in z. M o r e  accurate  
bounds  will  be der ived  in Sect ion 6. 

F o r  a lower  b o u n d  on  p(K) we m a y  turn  again  to Eq. (8), and  this t ime 
use the fact  tha t  I-I~ (1 - n~) >I 1 - Y.~ n~. This  gives 

P(K) >~ [O(K)/E(K)][1- ~r P, ] (37) 

where p~ = <n~). Cons idered  as an equali ty,  (37) is correct  to first o rder  in 
the density.  A s impler  bu t  somewha t  less accurate  lower bound ,  also correct  
to first order ,  can be ob ta ined  by  app ly ing  the same me thod  to (9) ins tead 
o f  (8); this b o u n d  is 

p(K)>. 0(K)(1  - ~ p , )  (38) 

In  Table  I I I  the bounds  (36)-(38), together  with a more  accurate  upper  
b o u n d  der ived in the next  section, are  c o m p a r e d  with  the compute r  s imula t ion  
results  a l ready  quo ted  in Table  I. 

6. A L T E R N A T I N G  B O U N D S  

A n o t h e r  way  o f  ob ta in ing  bo th  upper  and  lower  bounds  on p(K) is to 
use the idea  o f  Minlos  and  Sinai  (8) tha t  the  lat t ice gas can be regarded  as a 
mixture  o f  clusters,  which in teract  in the  same way  as the par t ic les  in a 
ha rd-sphere  s y s t e m - - t h r o u g h  the fact  tha t  they  cannot  overlap.  This makes  
i t  poss ib le  to app ly  the  type  o f  inequal i ty  d iscovered by  Lieb. (9) Our  work  is 
also re la ted  to tha t  o f  Mi i rmann .  (2) 

Table III. Comparison of Bounds on <mz>, Calculated Without  Using the 
Attractive Character of the Interactions, wi th the Values Estimated from the 

Computer Simulation Used in Table I 

Lower Lower Upper Crude upper 
Cluster size bounds bounds Values from bound from bound from 

l from (38) . from (37) simulation (49)-(51) (36) 

1 1246.7 1253.0 1266 + 4 1263.8 1373.3 
2 171.0 173.2 173 _+ 2 179.0 202.8 
3 38.8 39.7 41 ___ 1.8 - -  49.9 
4 11.2 - -  12.7 __ 0.6 - -  15.9 
5 3.6 - -  4.4 +_ 0.3 - -  5.7 
6 1.2 - -  1.6 __+ 0.2 - -  2.2 
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For any pair K, K'  of subsets of A, we define the functions e(K, K') 
and f (K,  K') by 

e(K, K') = 1 + f (K,  K') = (10 if K and K'  do not overlap or touch 
if they do overlap or touch, or are identical 

09) 

Then, in view of the additivity conditions (4) and (5), the definition (6) of  
p(K) can be written 

p(K) = O(K) ~,  O(K')e(K, K')/E(A) (40) 
K" 

where the sum goes over all possible configurations K'  on A. Let the decom- 
positions of K and K' into clusters be 

K =  KI t.J K2 u ... u K,, K'  = KI' u ... u K,' (41) 

Using additivity again, we have 

O(K) = O(K,)O(K=)... O(Kr) (42) 

and. 

s.d_. 
e(K, K') = 1 1  [1 + f(K1, Ks')le(K2 w K3 w ... w Kr, K') (43) 

j = J .  

Since - 1 ~< f (K,  K') <~ O, we have (16) [writingf~ forf(K1,  K/)] 

1-[(1 +f,.) 1 
J 

I--I (1 + fj.) ~< 1 + ~ f j  (44) 
J J 

1 (1 + 1 + Ey, + E f ,  f,, et . 
J .~ i < j  

Substituting the first of  these inequalities into (43) and then using the result, 
with (42), in (40), we find 

p(K) <~ O(K1) ... O(Kr) ~ e(K2 u ... u K~, K')O(K')Fa(A) 
K" 

= O(K1)p(K2 u ... U K,) (45) 

If  instead we substitute the second line of  (44) into (43) and proceed as 
before, we find after some manipulations 

p(K) >1 right-hand side of  (45) 

+ O(KI) ~ f ( K x ,  Kx')p(K2 w ... u K,, K~') (46) 
KI" 
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where we have defined, for any two subsets A, B of  A, 

p(A, 8) = e(A, B)p(A v 8)  (47) 

so that p(A, B) = p(A u B) if  A, B are compatible, so that e(A, B) = 1, 
and p(A, B) = 0 if not. 

The general form for inequalities such as (45) and (46) is 

t 

p(K) ~ O(K1) ~ (I/q!) ~ ... 
q = 0 K 1" Kq '  

q 

x I-If(K~, Kj)p(K2 u ... v Kr, KI',..., K~') (48) 
j = l  

where the symbol >< means ~< if t is even and /> if t is odd. 
As an example of the use of  these inequalities, we calculate an upper 

bound on p(1), the probability of  a one-particle cluster, for an infinite cubic 
lattice. Using (48) with t = 2, we obtain the formula 

I } p(1) = z 1 - ~ 'p (K~ ' )  + �89 ~ p(K1, K2') (49) 

where the first sum goes over clusters K~' that intersect 1 and the second 
goes over ordered pairs KI', K2' of  compatible clusters that intersect 1. The 
sum ~ '  can be bounded below using the lower bound (38) on p(K~'); the 
result is 

~'p(KI') >1 ~ [l + b(l)]Qf[1 - (2 + 5l)p I (50) 
! 

where b(l) and Qz are defined just after Eq. (30), and we use as many terms of  
the sum as we like, provided they are all nonnegative. 

To bound the sum ~", the method we use depends on whether or not 
the ensemble is restricted to a finite set of clusters. In the restricted ensemble, 
we can use the upper bound (45), which gives 

~"p(K~', Kz') ~ ~"  O(K~')p(Kz') <<. 30pO (51) 

where the factor 30 is the number of  ordered pairs of  nonadjacent sites in 
K, p is the density [= ~K2, N(K2')p(K2')], and p is defined by 

p = ~ N(KI')O(K~') = ~ lQzz ~ (52) 
g 1" l 

'This series terminates, because we are using a restricted ensemble. 
As an example of  the use of (49) with (50) and (51), we have compared 

the observed number ml of  one-particle clusters observed in the simulation 
mentioned earlier with the upper bound on (m~) given by (49) for an 
ensemble restricted to clusters of ten particles or less, using the same fugacity 
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as before. The upper bound on ( m l )  given by this method, and also the analo- 
gous upper bound on (m2), are shown in the fifth column of Table III .  To 
be strictly accurate, these bounds should be compared with the averages of  
mz and m2 taken only over the sample configurations in which no dusters 
larger than ten particles were present. These averages are very slightly higher 
than the ones recorded in column four of  Table III ,  but the difference is small 
because only two clusters larger than ten were observed in the 60 or so 
configurations sampled. 

When the full grand canonical ensemble is used, the upper bound (51) 
on ~"  p(KI', K2') does not work since we have no general upper bound on/~ 
(in fact the series defining p need not now converge.) This difficulty can be 
overcome by considering separately the parts of  the sum ~ " p ( K ( ,  K2") in 
which N(K( )  ~< 2 and in which N(K~') > 2. We omit the derivation of  the 
resulting upper bound, which is 

~ "  p(K~', K2") <<. 30(a lz  + 202z2)p + 30[p - z(1 - 7p) - 6z2y(1 - 12p)] 

giving (rnl)  ~< 1302 for the case considered in Tables I and III .  
The inequalities (48) are the analogs of  the ones forming the " truncated 

Kirkwood-Salsburg equat ion" (10~ for a gas of  particles with repulsive forces, 
and can be solved iteratively, as in Ref. 10, to give a succession of alternating 
upper and lower bounds on the p(K)'s.  We shall not discuss this question 
further here, however, because the formulas so obtained do not appear to 
be as useful for practical calculations as the ones we have described. 
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